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Abstract: New data for electricity consumption per capita at a resolution of approxi-

mately one square kilometre are studied in order to describe the distribution across the

United Kingdom and trends between urban and rural areas. A two-class distribution is

found, with around 99% of the data in the lower class, characterised by an exponential

Boltzmann-Gibbs distribution, and 1% in the upper class, demonstrating a Pareto power-

law distribution. This is shown to apply even at the smallest spatial scales, con�rming

the econophysics literature which predicts that this distribution will invariably apply to

economic data as a result of entropy maximisation under the second law of thermody-

namics. Electricity consumption per capita is found to be systematically higher in rural

areas and lower in urban areas in the United Kingdom, with each containing similar

amounts of inequality. London, however, is shown to be considerably more unequal, and

a much higher proportion of the data (15%) is found to belong to the upper class.
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Section 1

Introduction

Climate change, energy security and inequality are among the greatest challenges of

our time. This makes the consumption of electricity and its distribution a topic of vital

importance: electricity consumption is one of the key drivers of climate change; its distri-

bution describes access to and demand for energy resources, a key determinant of quality

of life and an increasingly contested commodity; and is inextricably linked to inequality

in income and wealth. It also provides a valuable metric for measuring economic activity

and how it varies in space and time, which is imperative to informing policy both on

energy and the wider economy.

Emerging theories from the �eld of econophysics discuss the possibility that the distri-

bution of money in the economy is universal across all societies and tends towards a

Boltzmann-Gibbs probability distribution, maximising entropy through pairwise inter-

actions in the same way as the energy of atoms in a gas in a closed system (Dragulescu

and Yakovenko, 2000). It has been shown that this distribution �ts the lower 95-99%

of society, while the upper section, which accumulates its wealth from capital rather

than wages, demonstrates a Pareto power-law distribution (Dragulescu and Yakovenko,

2001b). These have been extensively tested against income and wealth data, but have

only recently been applied to energy consumption, and rarely below a national level

(Banerjee and Yakovenko, 2010; Lawrence et al., 2013) or to just electricity consump-

tion. Access has been granted to new data mapping global electricity consumption at the

scale of approximately one square kilometre (Jarvis, 2018), allowing these methods from

statistical physics to be applied to electricity consumption on an unprecedented scale,

and for the trends and inequalities in the distribution of electricity consumption in the

United Kingdom to be studied at a high level of detail.

1.1 Measuring and understanding inequality

The persistence of economic inequality in most societies has been perhaps one of the most

studied economic and public policy phenomena over at least the last few centuries, and the

desire to understand it empirically and mathematically has fuelled the ever-growing �eld
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of econometrics, which applies statistical methods to economic relationships. Methods

for examining distributions of economic data, including, but rarely applied to, electricity

consumption, have developed into conventional forms which will be discussed here, but

the theory behind what causes these distributions remains hotly contested.

To solve some of this contestation, the relatively recent �eld of econophysics goes further

and applies models and methods from physics to explain economic phenomena. The

term was coined by Stanley et al. (1996) who discussed �the possibility that behavior

of large numbers of humans (as measured, e.g., by economic indices) might conform to

analogs of the scaling laws that have proved useful in describing systems composed of

large numbers of inanimate objects�. Theories in this �eld seek to show that distributions

of economic data, such as income, wealth or electricity consumption, are determined by

factors inherent to physics.

1.1.1 Early models of income distribution: Pareto and Lorenz

An early pioneer in the mathematics of inequality was Vilfredo Pareto. Amid rising

concerns about inequality and the spread of Marxist thinking in the late nineteenth and

early twentieth century, Pareto began experimenting with mathematical models to gain

a better understanding of real economic data, starting with tax records from European

cities and states (Rodd, 1995). In his �rst work, Pareto (1897) showed that the distri-

bution of wealth was roughly the same in all countries and societies. Plotting various

cumulative income distributions on a log-log scale, he observed that each distribution

gave a straight line with roughly the same gradient regardless of the study area (Fig.

1.1). He concluded that the shape of income distribution is deterministic and can be

summarised as an inverse power law: the cumulative probability of a person having in-

come or wealth of at least w varies as P (w) ∝ w−α, where α is a constant gradient of

the log-log graph (Fig. 1.1).

An early critic of this presentation of this data was Lorenz (1905), who claimed that loga-

rithmic curves are misleading as they can easily be mistaken as linear by casual observers,

and fail to take account of changes in population. He proposed the now-widespread

Lorenz curve (Fig. 1.2) with axes displaying cumulative amounts of the population and

cumulative amounts of income (Lorenz, 1905; Persky, 1992). Gini (1912) developed the

Gini coe�cient based on the Lorenz curve, de�ning inequality as G = A
A+B where A

is the area between the line of equality and the Lorenz curve and B is area below the

Lorenz curve, giving an output between 0 (perfect equality) and 100 (perfect inequality)

which remains one of the most widely used measures of inequality.

Despite this and much other criticism, including on the validity of his empirical work

(Pigou, 1912, cited in Persky, 1992; Gini, 1936 cited in Persky, 1992), Pareto's assertion

that the distribution of wealth is fundamental and unchanging gathered considerable
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Figure 1.1: Income distributions plotted on a log-log scale give a straight line with the
same gradient, regardless of where they are from (Pareto, 1897, cited in Persky, 1992).

Figure 1.2: An example of Lorenz curves from Banerjee and Yakovenko (2010), showing
income distributions for the United States in 1996 and 2007 against a line of perfect
equality (black).

interest and economists and mathematicians set out to explain it. Numerous models

were conceived to demonstrate Pareto's law using stochastic processes: considering each

economic agent (people in the economy) as individual entities with probabilistic income

and wealth (Champernowne, 1953; Gibrat, 1931; Kalecki, 1945). From this research

it emerged that Pareto's law is observed in high incomes but �not even approximately

obeyed� for low incomes and thus a �two-tailed distribution� is necessary (Champer-

nowne, 1953). Mandelbrot (1960) proposed this as a �weak Pareto law�, applying to only

the top 20% of incomes and often only asymptotically rather than directly.
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1.1.2 Turning to physics: Yakovenko

Around the year 2000, several econophysicists observed that the probability distribution

of money resembles that of identical molecules in a gas. These molecules spontaneously

form unequal energy distributions due to energy being transferred randomly in collision,

tending towards an exponential distribution of energy between molecules at maximum

entropy. They began to propose models based on economic agents similarly perform-

ing pairwise economic transactions, rather than having isolated individual �uctuations

(Chakraborti and Chakrabarti, 2000; Dragulescu and Yakovenko, 2000; Krapivsky and

Redner, 1998; Mimkes, 2000). They all follow the same broad principles, so this discus-

sion will focus on the most famous of these, proposed by (Dragulescu and Yakovenko,

2000).

Based on the crude idea that the total amount of money in a closed economic system (a

system from which there is no input or output of money) is conserved, Dragulescu and

Yakovenko (2000) theorised that the distribution of money must re�ect the Boltzmann-

Gibbs law. This is a fundamental law of statistical mechanics that states that energy in

a closed physical system, ε, will naturally form an exponential probability distribution

P (ε) ∝ e−ε/T where T is the temperature. They then demonstrated both theoretically

and empirically � using computer simulations of random money transfers between eco-

nomic agents which are each given the same initial amount of money � that most of the

distribution of money, m, is similarly modelled by an exponential function:

P (m) ∝ e−m/Tm

With just one parameter, the �money temperature�, Tm (Dragulescu and Yakovenko,

2001a). Just as the temperature of a gas measures the average energy of the molecules,

the �temperature� of money corresponds to the average amount of money in the system.

Dragulescu and Yakovenko (2001b, 2003) subsequently showed that this function only

�ts the lower section of the income distribution, and a Pareto power-law function �ts

the upper end of incomes. Shown by plotting real economic data on a log-log scale

(Fig. 1.3), the linear upper end demonstrates the power law, and on a log-linear scale

(inset) the lower end is proved to be exponential by producing a straight line. Indeed,

this combination of distributions has a counterpart in physics: under certain conditions,

plasma produces a power-law distribution above a critical energy level and an exponential

distribution below � known as `thermal' and `superthermal' parts (Hasegawa et al., 1985).

The explanation given for this two-part distribution evoked more conventional economics:

the two distinct sections of the distribution re�ect the �two-class structure� of the USA,

with the intersection of the lines re�ecting the boundary between the upper and lower

class (Silva and Yakovenko, 2005). Silva and Yakovenko (2005) found that for the 1997

US income data, this boundary was at an annual income of around 120 k$, and 1-3% of
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Figure 1.3: Cumulative probability distribution of annual income in the United States
in 1997 from Internal Revenue Service data, with lines �tted to the Boltzmann-Gibbs
exponential and Pareto power-law functions (Dragulescu and Yakovenko, 2003).

the population belonged to the upper class compared to 97-99% in the lower. By way

of an explanation for the sharp boundary between the distribution patterns, Levy and

Levy (2003) suggested that the upper tail is predominantly made up by those who own

capital and generate the majority of their wealth from investment assets, while income

in the lower tail is almost entirely from wages and salaries.

1.1.3 Applying statistical mechanics to energy consumption

While these methods proved useful in characterising and understanding wealth and in-

come inequality within countries, Banerjee and Yakovenko (2010) identi�ed that they

are di�cult to apply on a global scale due to the varying value of di�erent currencies.

They instead chose to measure energy consumption per capita � a physical quantity

which is measured in the universal unit kW and therefore comparable across the world

� as a proxy for living standards and therefore wealth. As the vast majority of global

energy production is based on fossil fuel extraction, they claimed it can be considered a

limited resource that is divided among the population and therefore, as with money, the

distribution should tend towards maximum entropy rather than equality and thus show

an exponential Boltzmann-Gibbs distribution:

P (ε) ∝ e−ε/Tε

where ε is energy consumption per capita and the �temperature� Tε is the average energy

consumption per capita (Banerjee and Yakovenko, 2010; Lawrence et al., 2013).

Banerjee and Yakovenko (2010) studied empirical energy consumption data from the

World Resources Institute (WRI) for 1990, 2000 and 2005, dividing total consumption
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for each country by its population and constructing a cumulative probability distribu-

tion. This work was replicated and improved by Lawrence et al. (2013) using Energy

Information Administration (EIA) data, which included considerably more countries and

data up to 2010. Both �nd qualitative evidence of a correlation between the theo-

retical exponential function above, shown by the dotted black line, and the empirical

data (Fig. 1.4a), proving that energy consumption per capita approximately follows the

Boltzmann-Gibbs distribution. They also show that the distribution of energy consump-

tion has gradually become more equal between 1980 and 2010 and more exponential over

that time (Fig. 1.4b), which Lawrence et al. (2013) attribute to economic globalisation

facilitating greater interconnectivity and bringing the world closer to maximum `entropy'.

Figure 1.4: (a) Cumulative probability distribution of energy consumption per capita for
a selection of countries in 2010 from EIA data, against a simple exponential function
based on the average energy consumption per capita. The inset graph shows the same
functions on a log-linear graph to prove their exponential distribution (Lawrence et al.,
2013).
(b) Lorenz plots of energy consumption per capita for the same countries from 1980-2010
against a similar exponential function to Figure 5a, showing the trend towards more
exponential (less unequal) distributions (Lawrence et al., 2013).

However, as Banerjee and Yakovenko (2010) particularly acknowledge, this analysis re-

lies on the very crude assumption that the residents of each country each have identical

energy consumption, as the only data widely available at the time of the research was

total consumption per country. This leads to sharp discontinuities in the data (Figure

6), removing the possibility of a true exponential distribution, and allowing only a shal-

low level of analysis. As much of the work cited earlier shows, there is vast inequality

within as well as between countries, and income distributions within countries show a

more complex two-tailed structure � whether such a structure exists for the distribution

of energy consumption remains to be seen.

With higher resolution data, it would be possible to determine with more accuracy

whether an exponential Boltzmann-Gibbs distribution exists for energy or electricity
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Figure 1.5: The functions from Figure 5 presented on a log-log scale, showing an ex-
ponential distribution analogous to the lower section of cumulative income distribution
(Fig. 1.3) (Banerjee and Yakovenko, 2010).

consumption and test it both qualitatively and quantitatively (neither Banerjee and

Yakovenko (2010) nor Lawrence et al. (2013) consider their data suitable enough to

quantitatively test). There is also opportunity to examine whether there exists an upper

tail of the population exhibiting a Pareto power-law distribution, which ought to follow

if the distribution of energy or electricity consumption correlates with that of income.

1.2 Electricity consumption in the United Kingdom

As well as the potential for investigating whether such a two-class structure exists, disag-

gregated data for energy consumption within countries would allow analysis of inequality

in electricity consumption on a sub-national level, something which is insu�ciently stud-

ied in the literature (Jacobson et al., 2005). Such analysis would be able to investigate

trends in the spatial distribution of electricity consumption within countries, re�ecting

regional inequalities, economic trends and the e�ects of public policy.

This is as important in the UK as anywhere, which has a growing gap between those on

high and low incomes (Hood and Waters, 2017) and growing inequalities between regions

(Ebell, 2017; Koop et al., 2018; Raikes et al., 2018) which are increasingly thought to be

polarising politics (Zoega, 2016). Average household wealth is more than twice as high

in the South East of England compared to the North East, for example, and wealth is

growing at under half the rate in the North of England that it is in London (Raikes et

al., 2018). Not only is this inequality a problem of economic and moral justice, and not

only is it harmful to the economy as a whole (Wilkinson and Pickett, 2009), but it is

increasingly recognised that successful strategies to move towards a sustainable economy

must take into account the heterogeneity of the economy and the e�ect this has on policy

(Lawrence et al., 2013; Wu et al., 2012).
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For example, in researching the link between income and energy consumption, Cayla et

al. (2011) sugested that a policy such as a universal carbon tax could be ine�ective in

reducing emissions, as poorer households do not have the necessary access to capital to

make improvements that would reduce their energy bills. Even if given the capital, they

argued, there would be potential for a rebound e�ect as they use the improvements to in-

crease their consumption in order to catch up with middle class living standards. Indeed,

the consumption of electricity is a cause as well as a product of economic inequality: over

11% of households in England are in fuel poverty (de�ned as households requiring fuel

costs above the national median, or where fuel costs leave the household with a residual

income below the o�cial poverty line) (BEIS, 2018a). This too is, unsurprisingly, un-

evenly distributed regionally, with 13.8% of households in the North East in fuel poverty

and 9.0% in the South East (BEIS, 2018a).

1.2.1 The urban-rural divide in electricity consumption

A consideration that cannot be ignored in spatial analysis of the UK and the consumption

of electricity is the urban form and the rural-urban divide. The UK is one of only ten

countries which has over 5% of its total land area covered by cities (Angel et al., 2011),

and it has over 80% of its population and growing living in urban areas (ONS, 2014).

With urban settlements responsible for 76% of global energy consumption (IEA, 2013)

and 71% of energy-related carbon dioxide emissions (WEC, 2013), understanding the

size, distribution and consumption patterns of urban and rural areas and their relation

to electricity is highly relevant.

Although much of the literature is focused outside the UK, the e�ect of the urban form on

electricity consumption in general is an area that is studied with keen interest. Norman

et al. (2006) studied energy use and greenhouse gas emissions in the building operation,

construction and transportation sectors across residential areas of low and high density in

Toronto, and discovered substantially lower per capita energy use and emissions in high

density urban core development. O'Brien et al. (2010) con�rmed this, �nding reduced

net energy use with increasing density of housing. As electricity makes up a substantial

part of energy consumption, particularly on a domestic level (BEIS, 2018b), trends in

energy consumption can broadly be assumed to apply to electricity and therefore urban

areas in the UK might be expected to display lower electricity consumption per capita

than rural areas. Some research has suggested, however, that although direct energy use

is generally lower for households in urban environments, they have larger total energy

use pro�les associated with their wider consumption of goods and services (Wiedenhofer

et al., 2013) � a factor frequently neglected in this area of research due to the complexity

of tracing the inputs to everyday household consumption.

Hui (2001) quotes a number of reasons that may suggest why urban environments demon-

strate lower household energy consumption: (a) the building stock, as it is more compact
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and in higher densities, consumes energy more e�ciently; (b) the improved (and in some

cases reduced need for) transport and communication reduces energy use; (c) new and

more e�cient energy technologies are more easily implemented in cities; and (d) greater

potential for mixed land use leads to improved e�ciency. Signi�cant energy savings

through reduced heat demand in high density housing are consistently shown in studies

of urban morphology and energy use (Rode et al., 2014), including studies of thermody-

namics that show denser housing typically has lower surface area-to-volume ratios and

therefore reduced heat losses (Mohajeri et al., 2015).

However, not all studies give a direct negative correlation between density of urban

environment and energy use. Rather, Minx et al. (2013) studied the carbon dioxide

emissions of urban and rural areas of the UK at a high resolution and found that �car-

bon footprints can be comparatively high or low across density gradients depending on

the location-speci�c socio-demographic, infrastructural and geographic characteristics of

the area under consideration". Baiocchi et al. (2015), moreover, reject any attempts to

explain energy use and emissions using simple correlation analysis and suggest instead

that consumption is driven by �unique, place-speci�c combinations of emission drivers"

including density, income, household size, access to central heating and the number of

houses in poor condition. Their study of the UK on a �ner spatial resolution did, how-

ever, �nd that density and income were dominant factors in energy use. Both studies

note the importance of granularity on the accuracy of this research and impacts on pol-

icy: not only does �ner-scaled data allow for better analysis of how energy consumption

is distributed and therefore better generalised policy, but also better understanding of

heterogeneity within cities and regions and therefore specialisation of policy (Baiocchi et

al., 2015).

The exact relationship between the urban form and electricity consumption, and its im-

portance in the distribution of electricity consumption in the UK, is therefore a topic

that needs more research with high resolution data. These could maximise the use of the

methods discussed earlier: if urban electricity use per capita is systematically di�erent

to that in rural areas, a cumulative probability curve for urban areas would be shifted

horizontally, and if all other factors are equal the curve would remain the same shape.

1.3 Aims and hypotheses

The distribution of electricity consumption in the UK is a very broad topic, and the data

that has been made available (Jarvis, 2018) has yet to be applied to it, allowing a broad

scope for potential areas of study. As resources are limited, however, this research will

focus on two main aims. First, to study the extent to which electricity consumption in

the UK follows the Boltzmann-Gibbs and Pareto laws, as the literature would suggest. If

this distribution is truly universal and entropy is always maximised, it should follow this

distribution at any scale, anywhere in space - few studies have been able to compare the
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extent to which it applies at very small scales. Second, to explore how the distribution

of electricity consumption varies across of the UK, with a particular focus on comparing

urban and rural areas. To support these aims, three null hypotheses will be tested:

(1) Electricity consumption per capita in the UK does not demonstrate a two-class dis-

tribution that �ts the Boltzmann-Gibbs and Pareto laws.

(2) Electricity consumption per capita in the UK does not demonstrate a two-class dis-

tribution �tting the Boltzmann-Gibbs and Pareto laws at all spatial scales; if it applies

at the national level, it ceases to apply at other scales.

(3) Electricity consumption per capita in the UK demonstrates the same distribution in

urban and rural areas.
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Section 2

Method

2.1 Sourcing and preparation of datasets

The Global Gridded Electricity (GGE) dataset contains raster �les in GeoTIFF for-

mat mapping annual electricity consumption in kilowatt-hours per square kilometre

(kWh/km2) with a 30 square arcsecond (approximately one square kilometre) spatial

resolution (Jarvis, 2018). These are provided for 2000, 2005, 2010 and 2015, data which

could be used for temporal studies, but for the purposes of this research only the most

recent (2015) was used.

The 2015 GGE raster was imported into ArcGIS, which provides a wide range of tools for

manipulation of spatial data. Administrative boundaries for the UK in shape�le format

were sourced from the Database of Global Administrative Areas (Hijmans et al., 2018),

and, using the Clip tool in ArcToolbox, the GGE raster was clipped to the boundary for

the UK to create a UK gridded electricity map.

A global gridded population raster for 2015 was taken from the Gridded Population of

the World version 4 dataset (GPWv4), which similarly provides yearly global population

data for 2000, 2005, 2010 and 2015 in 30 square arcsecond cells (CIESIN, 2016). The

Raster Calculator tool in ArcGIS's Spatial Analyst extension was then used to divide

the electricity consumption by the population count for each cell to produce a map of

UK gridded electricity per capita.

This map was exported as a raster and imported into R using the raster() function, and

to extract the data in a format suitable for analysis was then converted into a data frame

using the as.data.frame() function and from that into a vector using unlist().

2.2 Hypothesis one: �tting a two-class distribution

The electricity consumption per capita map was investigated to assess the extent to

which its data demonstrated Dragulescu and Yakovenko (2001b)'s observed two-class
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distribution. Per capita data removes the e�ect of uneven population distribution and

allows areas to be compared like for like, and it is a reasonable predictor of incomes (de

Rezende Francisco et al., 2007), hence it is the chosen metric in the literature. Cumula-

tive probability graphs were produced by iterating through the values and calculating the

probability of a square kilometre having the particular electricity consumption n, P (ε),

as 1− n
N where N is the total number of values. This was plotted on a log y axis against

electricity consumption on a log x axis, and repeated for electricity consumption per

capita. If the null hypothesis is true, a two-class distribution should be evident on these

graphs, with an exponential shape on the left and a linear upper tail on the right. If such

a distribution was qualitatively visible, the in�ection point between the exponential and

linear curves was located by eye and the data either side of it separated for quantitative

testing.

To test the extent to which the lower section of the plot is exponential, a further plot

was made on which the natural log is taken of just the electricity consumption (x axis)

data, which would be expected to produce a perfectly linear curve if the log-log graph

is truly exponential. The lm() function was used to perform linear regression, �tting a

straight line to the data and testing the variance from the line, giving an adjusted R2

value as a simple test of the �t and as such a test of whether the distribution matches

the expected exponential shape. A similar linear regression was then performed on the

data above the in�ection point with the natural log performed on both axes, to test the

extent to which it is linear, re�ecting a power-law relationship.

Splitting the distribution into sections by eye from a graph is an imprecise method

and therefore the R2 values will have a substantial amount of uncertainty, but as this

hypothesis is only concerned with proving the presence of the expected distribution shape

at all and the R2 values will not be used for any further quantitative analysis, it is

acceptable. They will be presented with two signi�cant �gures, reduced from the four

produced by the lm() function, to convey the low amount of precision in their production.

2.3 Hypothesis two: �tting at all spatial scales

The second hypothesis required this relationship to be tested across space and across

scale to see if there were areas of the country where the distribution does not apply, or

spatial scales at which it is no longer true. In the interests of the time and processing

power available, it was necessary to test a relatively small sample of locations and scales.

To ensure that the sample is representative of the country, and with the third hypothesis

in mind, a mix of rural and urban areas were selected.

Five cities in the UK were chosen: Manchester, Newcastle, Glasgow, Birmingham and

Bristol. These were selected because they were among the ten largest built up areas in

the dataset by area (ONS, 2017a) and were geographically diverse, representing at least

the North, Midlands and South of England, and Scotland. London was also included, but
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considered separately from other cities in case `megacities' obey a di�erent relationship.

Shape�les for these cities were provided by ONS (2017a), and centre points for them

were calculated using ArcMaps's Calculate Geometry tool. Five rural local authorities

were also chosen. They were selected to be a geographically diverse sample of the local

authorities with the lowest population density (ONS, 2013): Argyll & Bute and Highland

in Scotland, Eden and Ryedale in England, and Powys in Wales. Shape�les for local au-

thorities were included in the data sourced from Hijmans et al. (2018), and their centre

points were calculated using ArcMaps's Calculate Geometry tool.

As a macro-scale �t will have been investigated for the �rst hypothesis, three spatial

scales from regional level and below were studied for each location. Circles of 75 km, 25

km and 13 km diameter were extracted from the data: 75 km was a size that includes

the entirety of each city (excluding London), 25 km was likely to include just urban area,

and 13 km is an extreme close-up of the data to see whether the distribution is observed

even at very small scales. The circles were drawn from the centre point of the area using

ArcMap's Editor toolbar and extracted using the Clip tool in ArcToolbox (Fig. 2.1).

(a) 75km diameter (b) 25km diameter (c) 13km diameter

Figure 2.1: An example of one location examined: a raster image of 75 km, 25 km, and
13 km diameter circles of electricity consumption per capita in square kilometre cells
from the centre of London. The River Thames and City of London are visible as areas
of high per capita consumption.

For each scale at each location, the raster was imported into R and converted into vectors

as in section 2.1, and the cumulative probability calculated as in section 2.2. If there was

a two-class distribution evident in a log-log graph, the in�ection point was located by eye,

and a linear function was �tted to a log-linear plot of the lower section and another �tted

to a log-log plot of the upper section as in section 2.2. A large R2 value for both would

indicate that each section of the distribution is exponential and power-law respectively,

and disprove the null hypothesis.

Again, as the second hypothesis is only concerned with in a binary test of whether the

expected distribution is found at any place and scale or not, splitting the distribution

into sections by eye from a graph is an acceptable method. It follows, however, that the

results from this are imprecise and care should be taken in comparing them. The values
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will again be reduced two signi�cant �gures for presentation.

2.4 Hypothesis three: comparing urban and rural

To explore the e�ect that di�erent types of environment have on the distribution of per

capita electricity consumption, a large sample of both urban and rural data were ag-

gregated into single datasets and these were compared to the total UK distribution. A

`cities' dataset was created from a combined raster of the top 10 cities by population after

London, produced using the Clip tool in ArcToolbox on selected built up area shape�les

from ONS (2017a). A `rural' dataset was produced from a similar combined raster of

all wards given the most rural classi�cation, E2, in the UK Government's Rural Urban

Classi�cation (ONS, 2017b).

Density plots and box plots were then produced using the ggplot package and boxplot()

fuction in R respectively for each of the cities, urban, UK and London datasets; the latter

again included separate from other UK cities to investigate the e�ect of its substantially

greater size. These plots demonstrate the general qualities of the distribution as com-

pared to the overall UK distribution, such as their comparative averages and range. A

log-log cumulative probability graph was then produced with the cities, rural and Lon-

don data on the same plot to investigate whether the distribution shape, if it �ts the

two-class distribution predicted by the literature, changes based on the environment. If

the null hypothesis is true, the graph for each should overlap perfectly or at least show

no systematic di�erence.

Additionally, to assess the inequality within each type of environment, a Lorenz curve

was produced along with Gini coe�cients using the Lc() function and the ineq package

respectively. If the null hypothesis is true each environment should demonstrate the same

inequality.
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Section 3

Results

3.1 Hypothesis one: �tting a two-class distribution

The distribution of electricity consumption per capita for each of the United Kingdom's

485,271 square kilometre cells is heavily skewed towards low values, with a peak at around

12 kWh/p/km2 (Fig. 3.1).

Figure 3.1: Density plot of electricity consumption per capita per square kilometre in
the United Kingdom, demonstrating a strong positive skew.

On a log-log cumulative probability plot, similar to that used by Dragulescu and Yakovenko

(2001b), the data appear to show both an exponential and linear section (Fig. 3.2). Split-

ting the data for each section into separate graphs makes this visually clearer (Fig. 3.3).
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Figure 3.2: Cumulative probability graph showing electricity consumption per capita per
square kilometre in the United Kingdom with log-log axes. The dashed line indicates
the suggested divide between a lower exponential (Boltzmann-Gibbs) section and upper
liner (Pareto) section.
Inset: A log-linear plot of the same data (the x axis showing the natural log of electricity
consumption per capita per square kilometre), with a linear function �tted to the data.

The lower section is con�rmed to be exponential by �tting a linear function to the nat-

ural log of the x axis data (Fig. 3.2, inset), giving an R2 value of 0.99 (where p<.001,

indicating that the result is statistically signi�cant), and a similar �t to the natural log

of both axes in the upper section gives an R2 value of 0.99 (p<.001), con�rming it to be

linear.

(a) Lower exponential section (b) Upper linear section

Figure 3.3: The electricity consumption per capita cumulative probability data from Fig.
3.2 on log-log axes, showing just the data below and above the dashed line respectively.
This shows the distinct shape of the two distributions.

The boundary between the lower and upper section is at around 139 kWh/p/km2; 99%

of the data is in the lower section.
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3.2 Hypothesis two: �tting at all spatial scales

Linear functions �tted to each part of the distribution (log-linear to test for an exponen-

tial relationship in the lower section and log-log to test for a power-law relationship in the

upper) give good measures of �t for almost all locations and spatial scales tested (Table

3.1). An example provided below shows the reduction in quantity of data at smaller

scales but the persistence of the two-class distribution (Fig. 3.4).

(a) 75km diameter (b) 25km diameter (c) 13km diameter

Figure 3.4: An example of one location tested and the distribution at each spatial scale.
Electricity consumption per capita in square kilometre cells within a 75 km, 25 km, and
13 km diameter circle around London.
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Table 3.1: Adjusted R squared values for straight lines �tted to log-linear plots of the
lower (Boltzmann-Gibbs) section, and log-log plots of the upper (Pareto) section, of
electricity consumption per capita data in square kilometre cells within a 75 km, 25 km,
and 13 km diameter circle around London, �ve other urban areas, and �ve rural areas.
With a small number of exceptions, a good correlation is demonstrated, suggesting that
the expected two-class distribution applies universally. For all values p<.001.

Area Diameter Lower R2 Upper R2

London 75km 0.99 0.99
25km 0.99 0.90
13km 0.99 0.98

Manchester 75km 0.99 0.80
25km 0.99 0.98
13km 0.99 0.97

Tyne & Wear 75km 0.99 0.79
25km 0.99 0.92
13km 0.99 0.89

Bristol 75km 0.99 0.80
25km 0.99 0.97
13km 0.98 0.90

Glasgow 75km 0.99 0.93
25km 0.99 0.96
13km 0.99 0.95

West Mids 75km 0.99 0.97
25km 0.99 0.98
13km 0.99 0.82

Argyll & Bute 75km 0.98 0.86
25km 0.97 0.95
13km 0.98 0.94

Highland 75km 0.95 0.95
25km 0.91 0.93
13km 0.79 0.48

Eden 75km 0.99 0.90
25km 0.95 0.92
13km 0.83 0.89

Ryedale 75km 0.99 0.98
25km 0.99 0.87
13km 0.96 0.94

Powys 75km 0.99 0.96
25km 0.98 0.97
13km 0.97 0.43
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3.3 Hypothesis three: comparing urban and rural

Aggregated data for the most urban and most rural environments show a clear trend:

electricity consumption per capita is higher than the UK average in rural areas and lower

than the UK average in urban areas (Figs. 3.5, 3.6, 3.7). Urban areas also show a sub-

stantially more concentrated distribution with a smaller range of values than either rural

distributions or that of the whole country (Figs. 3.5, 3.6). London is broadly similar to

other cities in both of these regards (Figs. 3.5, 3.6).

Figure 3.5: Density plots for electricity consumption per capita data in square kilometre
cells for the ten largest UK cities after London combined, all ward areas classi�ed as E2
(the most rural) in the Government rural-urban classi�cation combined, London, and
the United Kingdom.

These trends are con�rmed by log-log cumulative probability plots: rural areas displace

the distribution to the right, representing uniformly increased electricity consumption

per capita across the whole distribution (Fig. 3.7). London's distribution is distinctly

di�erent from other cities however, with slightly lower values in the lower section but an

upper tail that makes up a much larger proportion of the distribution. To investigate

this further, the proportion of the population of each study area in the lower section was

recorded, and this demonstrated that London's upper tail makes up a proportion 10%

higher than in either typical urban or rural environments (Fig. 3.2).

21



Figure 3.6: Box plots for electricity consumption per capita data in square kilometre
cells for the ten largest UK cities after London combined, all ward areas classi�ed as E2
(the most rural) in the Government rural-urban classi�cation combined, London, and
the United Kingdom.

Figure 3.7: Cumulative probability graph showing electricity consumption per capita
in square kilometre cells with log-log axes for London, the ten largest UK cities after
London combined, and all ward areas classi�ed as E2 (the most rural) in the Government
rural-urban classi�cation combined, showing how the distribution varies between di�erent
settings.

Finally, Lorenz curves and Gini coe�cients give simple measures, qualitatively and quan-

titatively respectively, of how pure inequality varies between each of the environments.

Both rural and urban settings have a considerably less unequal distribution than the

United Kingdom as a whole, but London is more unequal than both (Figs. 3.8).
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Table 3.2: The proportion of the distribution of electricity consumption per capita dis-
playing an exponential Boltzmann-Gibbs distribution rather than a power-law Pareto
distribution, and therefore belonging to the lower of two societal classes, for the UK,
London, the ten largest UK cities after London combined, and all ward areas classi�ed
as E2 (the most rural) in the Government rural-urban classi�cation combined.

Study area Proportion of data points in lower class
UK 99%
London 85%
Rural 98%
Cities 96%

Figure 3.8: Lorenz curve demonstrating inequality in the electricity consumption per
capita in square kilometre cells for the UK, London, the ten largest UK cities after
London combined, and all ward areas classi�ed as E2 (the most rural) in the Government
rural-urban classi�cation combined. The straight black line represents perfect equality,
with increasing distance from it representing greater inequality in the study area. Gini
coe�cients are provided in brackets, with higher values up to 1 representing greater
inequality.
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Section 4

Discussion

4.1 Hypothesis one: �tting a two-class distribution

The basic distribution shape of electricity consumption per capita (Fig. 3.1) is as ex-

pected, with most of the data points concentrated at the lower end of the distribution

and the density of values exponentially tailing o� towards the higher end of electricity

consumption. This substantial inequality in electricity consumption �ts with the litera-

ture on energy consumption (and indeed also on wealth and incomes) which states, for

example, that the top third of the world population consumes two thirds of the world's

energy (Lawrence et al., 2013). Most notably, as discussed in section 3.1, on a log-log

cumulative frequency plot the distribution �ts the two-class structure that Dragulescu

and Yakovenko (2001b) found to �t money in the economy, with what appears to be an

exponential Boltzmann-Gibbs lower section and a linear Pareto upper tail (Fig. 3.3).

These are con�rmed quantitatively by R2 tests which give very strong measures of �t

to the two expected shapes and are both statistically signi�cant. Although the lower

section does not appear to �t an ideal exponential shape on log-log axes, on a plot with

the natural log performed on just one axis (Fig. 3.2, inset) an almost perfectly straight

line is formed, giving reasonable evidence that it is broadly exponential. The deviations

this straight line at the top and bottom are likely to be the e�ect of the distribution

below the peak in Fig. 3.1, which is not re�ected in the log-log cumulative plot, and the

power-law upper tail respectively.

Despite the imprecise methods used (discussed in section 4.4), the evidence, particularly

the quantitative tests, is strong enough that the null hypothesis can be considered to be

disproved: a two-class exponential and power-law distribution is evident. This is, to the

best of our knowledge, the �rst time that such a distribution has been proven for electric-

ity consumption, at least in the United Kingdom. This lends validity to the argument

that the distribution of electricity consumption in a closed system, as with income and

wealth, is predisposed to this distribution by physical processes, and naturally forms an

unequal distribution as a result of the second law of thermodynamics (Dragulescu and

Yakovenko, 2001b; Lawrence et al., 2013).

24



This has substantial and far-reaching implications: for example, that the distribution is

near-exponential suggests that it is close to maximum entropy. Lawrence et al. (2013)

propose that as the distribution of energy consumption reaches maximum entropy (as

they suggest is now beginning to happen on a global level), the general trend they identify

over recent decades towards reductions in inequality will slow down and inequality will

stabilise at the current level; in other words, the distribution shown represents the "nat-

ural" inequality. This inequality, it is claimed, is "virtually unavoidable" and di�cult to

�ght against (Lawrence et al., 2013). If the current inequality in electricity consumption

(as well as wealth and income, according to Dragulescu and Yakovenko (2001b)) across

the UK is inevitable and �xed at roughly its current state, this is hugely signi�cant to

the e�orts of much economic policy. One may conclude, as Pareto did over a century ago,

that it is an inevitable re�ection of human nature that a small number of "parasites"

will always hold much of society's wealth (Rodd, 1995), and that to increase the wealth

of the lower classes it is necessary to raise the wealth of the whole country (Persky, 1992).

Lawrence et al. (2013) point out, however, that their analysis of energy consumption -

the assumptions from which are replicated in this study - relies on the idea that energy

consumption is a `closed system' and therefore, just as in the Boltzmann-Gibbs distri-

bution of energy in gas particles, the total quantity of it in the system is �nite. As

discussed in section 1.1.3 this is only assumed to be true of energy consumption because

the majority of it is based on naturally-�nite fossil fuels; with the advent of widespread

renewable energy there is potential for this to no longer be true. A wholesale recon�gu-

ration of the economy towards one based around renewables could potentially therefore

not only substantially reduce greenhouse gas emissions, but also reduce inequality in a

way that is simply impossible in the current economy. Lawrence et al. (2013) also note

that decentralised energy, produced and consumed locally, may not be subject to the

principles of maximising entropy that cause this `inevitable' distribution as they are not

able to be distributed and exchanged between most of the population.

The boundary between the classes, at around 99% of the population in the lower class,

is high in comparison to the 95% which Dragulescu and Yakovenko (2001b) found for

income in the UK. Given the uncertainty involved in the methodology (see section 4.4)

and the lack of any other similarly speci�c research into the statistical mechanics of in-

equality in the UK, it is perhaps unwise to draw too much analysis from the apparent 4%

di�erence. It can at least be concluded that electricity consumption is broadly indicative,

if not perfectly representative, of income in the UK. This may suggest another conclusion

about the impact of these �ndings: the problem of inequality in electricity consumption

is an inevitability under the current economic system because it is strongly linked to the

distribution of money, which is inevitably unequal. Rather than simply decoupling this

system from fossil fuels (with the unrealistic necessity of ever-increasing, perhaps in�-

nite, electricity production in order to allow redistribution) reducing this inequality may

necessitate severing the connection between the money system and electricity altogether.
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4.2 Hypothesis two: �tting at all spatial scales

The second null hypothesis stated that this speci�c two-class distribution shape would

not apply at all scales, and suggested that as the scale of the study area got smaller there

is likely to be a point at which it ceases to apply. Replicating the analysis used to test

the �rst hypothesis for circles of increasingly small radii around a geographically diverse

set of locations, however, gave strong (and statistically signi�cant) R2 measurements for

�t to this distribution even at the smallest scales tested (below which there is not enough

data to meaningfully analyse) (Table 3.1). This is strong evidence for disproving the null

hypothesis.

Only two R2 values can be considered too low to prove a reasonable �t (all other values

are 0.79 or above): the upper power-law sections in the smallest scale (13 km diameter)

samples taken in the Highland and Powys local authorities give 0.48 and 0.43 respectively

(Table 3.1). This appears to be a problem exclusive to the upper sections - the compar-

ative lower sections demonstrate good measures of �t - and the smallest scale - at larger

diameters both sections give good measures of �t - and it is only found in rural areas.

A likely explanation is that the upper Pareto sections are simply much smaller in rural

areas (see Table 3.2) and these are among the most rural areas in the UK; at a 13-cell

diameter it is likely that they are made up of a very small number of data points, giving

a high potential for random variation to distort the overall shape of the distribution.

The strong exponential shape for the lower section and strong power-law shape at other

scales suggest that entropy is being maximised in the expected pattern, but the upper

tail is simply too small to be reliably measured. With this in mind, and considering the

overwhelming evidence from the rest of the measurements, this null hypothesis can be

considered disproved: not only does a two-class exponential and power-law distribution

apply to electricity consumption in the UK, but it applies across the country at all spatial

scales.

4.3 Hypothesis three: comparing urban and rural

The third null hypothesis proposed that there is no systematic di�erence between the

distribution of electricity consumption in urban and rural areas, in response to contested

literature about the e�ect of the urban form on electricity consumption and inequality.

The results, however, demonstrate substantial di�erence between urban and rural elec-

tricity consumption, most obviously that it is consistently higher than the UK average in

rural areas and lower in cities (Figs. 3.5, 3.6). Both demonstrate a two-class exponential

and power law distribution as expected from disproving the second hypothesis, but the

rural distribution is uniformly displaced to the right (representing higher electricity con-

sumption) and urban to the left (Fig. 3.7), suggesting systematically increased electricity
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consumption in rural areas and reduced in cities. This �rmly refutes the null hypothesis

and gives credence to research that suggests a correlation between building density, or

"urbanness", and electricity consumption (Hui, 2001; Norman et al., 2006; O'Brien et

al., 2010).

Cities also demonstrate a more homogeneous distribution (Figs. 3.5, 3.6), with an in-

terquartile range, for example, nearly half that of rural areas (Fig. 3.6). This might

suggest that the e�ects which produce lower average electricity consumption in cities,

such as reduced heat demand in higher density housing (Mohajeri et al., 2015; Rode et

al., 2014) or more e�cient transport (Hui, 2001), also have the e�ect of unifying the

amount of electricity consumed across the city. Rural areas, on the other hand, are often

very heterogeneous and the demand for heating, transport and other uses of electricity is

more varied, perhaps explaining the wider spread of values. However, this homogenisa-

tion is not re�ected in measures of inequality within each environment: cities are slightly

more equal than rural areas, with the exception of London, but the di�erence is relatively

minor with less than 0.02 di�erence in Gini coe�cient (Fig. 3.8). Therefore while the

distribution of electricity consumption in cities mostly covers a smaller range of values

than rural areas, the data within that range follow a similar unequal distribution, which

as demonstrated is mostly exponential with a proportionally small power-law upper tail

(Fig. 3.7).

Although the distribution is a similar shape for both the UK's rural areas and most of

its cities, London is an exception. It has a strong two-class distribution (Table 3.1, Fig.

3.7) and the lower section is similar to that of the other cities tested, but its upper tail

makes up a considerably larger proportion of the data than either the other cities or

rural areas (Table 3.2, Fig. 3.7). Unlike the next ten largest UK cities, which have 4% of

their combined population in the upper class (itself high compared to the UK average of

1%), London has a staggering 15%. London therefore has, according to Levy and Levy

(2003), a disproportionately large part of society that generates its wealth from owning

capital rather than earning wages (assuming that the two-class distribution of electricity

consumption is produced by the same factors as that for income and wealth). Nonethe-

less, the inequality within London is also greater than that of cities or rural areas (Fig.

3.8), suggesting a heavily divided city. The dominance of capital and the considerable

inequality in London requires an explanation greater than this study can a�ord, but is

a growing a�iction of globally-connected cities in the twenty-�rst century (Florida, 2017).

Figure 3.8 ostensibly shows, however, that inequality present within the UK as a whole

is a lot higher than the sample taken of its cities, its rural areas and even London.

This is likely to be a result of the vastly greater quantity of data for the whole UK -

Lorenz curves and Gini coe�cients are disproportionately a�ected by outliers (Cowell and

Victoria-Feser, 1996; Prendergast and Staudte, 2015) and the UK data has a very large

number of these (Fig. 3.6). OECD (2018) found an income Gini coe�cient for the UK of
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0.351 in 2016, and have not found an income Gini coe�cient for any country over the last

�ve years which is higher than 0.459, so a value of 0.648 for electricity consumption in

the UK is unlikely. It seems reasonable to conclude that this value is probably unreliable.

Those for London, other cities and rural areas do not appear to be unduly a�ected in this

way however, indeed London has a smaller number of data points (3,473) than the other

cities and rural areas (6,056 and 49,578 respectively, by comparison the UK has 485,271)

but a higher Gini co�cient. A reasonable amount of uncertainty should nonetheless be

assumed in the values for these, but the broad comparisons made in this section appear

acceptable.

4.4 Assumptions, limitations and uncertainties

Naturally for a study on this scale, a number of assumptions have been made that will

a�ect the interpretations made from the research, and the methodology involved pro-

duced a number of sources of uncertainty in the �ndings. Firstly, electricity consumption

per capita was averaged over each square kilometre as that was the highest resolution

of the available data: in any given square kilometre, every person was said to have the

same consumption. This is a major improvement from past attempts, such as those

of Lawrence et al. (2013) which averaged per capita data over whole countries, and is

to the best of our knowledge the highest resolution on which these methods have been

applied to energy or electricity consumption. Nonetheless the inequality present within

these square kilometre areas and any extremes within them may be neglected, and this is

likely to disproportionately a�ect urban areas where there are high population densities.

Furthermore, the electricity consumption data provided for each square kilometre is to-

tal consumption, including all forms of residential, industrial and commercial electricity

demand, rather than just household consumption (Jarvis, 2018). This is appropriate as

the literature theorised that total energy or electricity in the system will follow this dis-

tribution if it is �nite, but may produce unexpected results when compared to household

income data, for example, which is used extensively in the literature as a proxy for the

total distribution of money (Dragulescu and Yakovenko, 2001a). Industrial areas with

large amounts of electricity consumption but low permanent population will produce un-

expectedly high electricity consumption per capita �gures, which may appear to distort

the distribution in some local areas and make geographic comparisons to household data

di�cult. Care was taken not to compare the electricity consumption per capita and

household income data except at the level of national inequality.

The method used to test for the expected distribution also produces uncertainties. R2

tests are a very simple and useful measure of �t to linear functions, but can be misleading:

they can give inappropriately high values for a small number of data points (resolved by

using adjusted R2), and they can demonstrate a good level of �t despite the data po-

tentially being �t better by another function. For example, the log-linear plots created

to prove an exponential distribution by showing a straight line gave a non-linear result
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that would qualitatively appear to �t a cubic distribution better than a linear one (Fig.

3.2, inset), but nonetheless gave a high adjusted R2 value to a linear function as there

are a roughly equal number of data points on either side. In this instance, however, as

discussed in section 4.1 the middle section was treated as the expected straight line, and

the deviations at either end explained as unrelated parts of the distribution and removed

from the test. All the data tested against linear functions appeared linear in a graphical

plot, such as in Fig. 3.3b.

As discussed in section 2.2, locating the transition between the exponential and power-law

parts of the distribution by estimating based on appearance on a graph is an imprecise

method, which will have produced uncertainty in the R2 values (Table 3.1) and percent-

ages of the proportion in each section (Table 3.2). While more advanced mathematical

techniques could have been used to test for the change in gradient and locate the point

that gave maximum R2 values for each section, as these �gures were not used for any

further quantitative testing and only sought to show a high measure of �t was possible

for each section (as was successful), the simpler method was deemed appropriate. All

results produced from this method were presented to two signi�cant �gures, however,

and further analysis or manipulation of them beyond that done here is not advised.

The very limited sample of study sites selected to test the second hypothesis is a clear

limitation to this study. Although nearly all of the results were high values (Table 3.1),

there were two exceptions representing two out of the �ve rural locations tested - testing

a greater range of rural locations would help to explain whether they were truly excep-

tions or a feature common to some rural areas. Only testing three scales - 75 km, 25

km and 13 km diameter - further limits the extent of the analysis. It is unclear whether

even smaller scales could have produced positive results, and while the trend is gener-

ally towards lower measures of �t at smaller scales, at some locations (particularly in

the upper Pareto section) this is reversed, so tests at larger scales may also have been

informative. Moreover, for this and the third hypothesis, the analysis may have been

limited by only studying the extremes of the rural/urban divide. Around 45% of Eng-

land's urban population live in local authorities that do not belong to `major urban'

conurbations (Pateman, 2011), so the largest cities are not necessarily representative of

all urban areas. With more study sites, the distribution among towns (large and small)

could have been investigated, along with a sample that is more representative of the full

breadth of the UK, including of Scotland, Wales and Northern Ireland.

Finally, the analysis of the third hypothesis is very simplistic. In reality, there are many

more factors a�ecting electricity consumption than the extent to which an area is rural

or urban, and this dichotomy can also often be too simple, ignoring considerable het-

erogeneity in rural areas (Hoggart, 1990). By studying the e�ect of only one variable,

the analysis above risks oversimplifying the trends in electricity consumption in the UK

or, at worst, con�ating correlation with causation and masking other, more important
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factors. As mentioned in section 1.2.1, Baiocchi et al. (2015) warned about this type

of analysis, arguing that factors including income, household size, housing quality and

access to central heating, are too diverse and place-speci�c to allow conclusions to be

drawn from simple correlation analysis on a large scale. The results and conclusions must

therefore be treated with considerable caution, but despite these concerns the strength

and clarity of the correlation give su�cient evidence to disprove the third null hypothesis.
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Section 5

Conclusions

The data for electricity consumption per capita in the United Kingdom were found to �t a

two-class distribution, the majority of which is exponential, with a power-law distribution

demonstrated by roughly the top 1%. This �ts with the literature on the distribution of

wealth and income (nationally and globally) and global energy consumption per capita,

but is to the best of our knowledge the �rst time this has been shown to apply to elec-

tricity consumption per capita in the United Kingdom. Moreover, this distribution was

found to exist at all locations tested across the country, and at all spatial scales. This

con�rms theories that suggest that inequality in electricity consumption, as with that in

money, is an inevitable result of entropy maximisation. The socio-economic implications

of this �nding are therefore highly signi�cant, and suggestions for how this inevitability

may be overcome, such as shifting the economy towards renewables, decentralised power

generation or a complete decoupling of money and electricity, will be important areas for

future research.

Electricity consumption per capita was shown to be systematically higher in rural areas

as compared to urban areas, with a two-class distribution and similar measures of in-

equality found in both. Based on the literature this is predicted to be a result of factors

such as cities having higher density housing, which increases the e�ciency of heating,

and more e�cient (and less need for) transport. London was found to have much higher

inequality present within it than other cities, with around 15% of its data demonstrating

a power-law distribution compared to an average of 4% for a selection of the UK's other

large cities, which is theorised to represent a much higher proportion of the population

who generate their wealth from capital rather than wages.

Further research may seek to investigate whether the same trends exist for energy con-

sumption per capita, or may use the data for 2000, 2005 and 2010 to see whether,

as Lawrence et al. (2013) predict, entropy has maximised over time and the two-class

distribution has become more pronounced. This would also allow analysis of how the

rural-urban divide and spatial patterns of inequality have changed between 2000 and

2015. Further work may also address the issues identi�ed in section 4.4, such as studying

a wider range of locations and scales to add more rigour to the analysis of the second
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hypothesis, or testing the electricity consumption per capita data against other variables

(such as GDP per capita, which is commonly available in a similar format) that are likely

predictors of it to build on upon the analysis of spatial trends for the third hypothesis.

Comparing the distribution in London to other megacities around the world to investi-

gate whether it is unique to London, or a megacity phenomenon, would also be highly

informative.
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